
Switches, Leetcode

Tom Arrell

February 17



Last week. . .

Last week (2 weeks ago) we covered the basics of Git.

We also had a look at the role of GitHub and its relation to Git.



Today

I Switch statements
I Case
I Default
I Challenge

I Leetcode



Switch Statements

A switch statement is a short way to write a series of if statements.
It will execute the a single branch – the first statement in the list
which is equal to the “condition.”



Switch Example

...

func main() {
color := "blue"

switch color {
case "blue":

fmt.Println("The color of my car")
case "red":

fmt.Println("The color of my hat")
case "green":

fmt.Println("The color of my grass")
default:

fmt.Println("I have nothing of this color")
}

}



Switch Condition

If you omit the condition in the switch statement, the first branch
that matches with true will be selected.



Switch Truthy Example

...

func main() {
color := "blue"

switch {
case true: // Will always print here

fmt.Println("The color of my car")
case false:

fmt.Println("The color of my hat")
case color == "blue":

fmt.Println("The color of my grass")
default:

fmt.Println("I have nothing of this color")
}

}



Switch Break
If you want to break early from a switch statement, you can use the
break statement.

...

func main() {
color := "blue"

switch {
case true: // Will always print here

fmt.Println("The color of my car")
if color == "blue"

break;
}
fmt.Println("The color is not blue")

default:
fmt.Println("I have nothing of this color")

}
}



Switch Fallthrough
v := 42
switch v {
case 100:

fmt.Println(100)
fallthrough

case 42:
fmt.Println(42)
fallthrough

case 1:
fmt.Println(1)
fallthrough

default:
fmt.Println("default")

}
// Output:
// 42
// 1
// default



Switch Fallthrough

A fallthrough statement must be the last thing in the case.

The following will not work.

switch {
case f():

if g() {
fallthrough // Does not work!

}
h()

default:
error()

}

Fallthrough also does not work in a type switch.



Multiple Cases

You can trigger the same case with multiple values by using a
comma separated list.

func colors(color string) bool {
switch color {
case "blue", "red", "green":

return true
}
return false

}



Noop Case

Sometimes you want certain cases to do nothing.

func pluralEnding(n int) string {
ending := ""

switch n {
case 1:
default:

ending = "s"
}

return ending
}

fmt.Sprintf("foo%s\n", pluralEnding(1)) == "foo"
fmt.Sprintf("bar%s\n", pluralEnding(2)) == "bars"



Leetcode

Leetcode is a platform for you to improve your programming skills
by solving challenges.

https://leetcode.com

Now we’ll pick a couple of problems and go through solving them
together in Go.



lesson 9, fin

If you had any trouble, now is the time to ask for help!

Questions?


