
Maps and Methods

Tom Arrell

January 20



Last week. . .

We went through some practical challenges. The answer to each is
available on Github.

Did anyone go away and complete the fifth challenge?



This week

I Maps
I introduction
I creation
I getters
I setters
I challenge

I Methods
I introduction
I challenge



What is a map?

A map is a data structure which contains key-value pairs.

e.g.

key: value
key: value
...



What is a map?

In almost all implementations of a map, you have at least two
things that you can do with them.

1. Set a value with a specific key
2. Get a value with a specific key

All keys must be unique. i.e. A single key can only map to a single
value.

A sufficient analogy is a phone book. Looking someone up by their
name will give you their phone number.



Creating a Map

In Go, to create a map, you need to specify both the key and the
value types.

Once we know that, we can then use the builtin function make to
construct our map.

e.g.

myMap := make(map[string]int)

This will construct a map where all the keys are strings, and values
are integers.



Map: Setter

Once you’ve got an initialised map, you are able to set and get
values within it.

In order to set a given key to a specific value (given they are both of
the correct type for the particular map), you can do the following.

myMap := make(map[string]int)
myMap["hello"] = 2

This will set the key "hello" to the value 2 within the map.



Map: Getter

Once you have values inside your map that you would like to
retrieve, you can use a similar syntax.

e.g.

// Creation
myMap := make(map[string]int)
// Setting
myMap["hello"] = 2
// Getting & printing
val := myMap["hello"]
fmt.Println("The value set was %d", val)



Map Challenge

Given a paragraph of text, write a function which takes the text,
and returns a map where the keys are each word, and the value is
the count of the occurences of that word in the text.

func countWords(text string) map[string]int {
// your code

}

func main() {
text := "The quick brown fox might want to jump over..."

fmt.Println(countWords(text))
}



What is a Method?

A method is syntactic sugar for a function, where the first argument
is an instance of a type.

e.g.

type Person struct { ... }

func (p *Person) Greet() {
fmt.Println("Hello, %s", p.Name)

}

We can see in the above that the greet function has access to the
person, and can use the fields on the struct within the method.



What is a Method?

To call a method, we use the . operator on an instance of the type.

e.g.

...

func main() {
me := Person{ Name: "Skywalker" }
me.Greet() // prints: Hello, Skywalker

}



What is a Method?

So why is this syntactic sugar? Well, what we saw on the previous
slide is equivalent to:

func Greet(p *Person) {
fmt.Println("Hello, %s", p.Name)

}

Using a method means you don’t have to pass in the instance to a
function through the arguments.

Defining related sets of methods becomes important when we get to
interfaces.



Methods on all types

Methods are very versatile, you can define them on any custom type.

e.g.

type Age int

func (a *Age) String() string {
return fmt.Sprintf("%d years", a)

}

This allows you to define custom types with special properties, such
as printing themselves in a unique manner.

We’ll now take a quick look at time.Time.



Method challenge

Create a struct named Circle with a single int field called
Radius. Write a method on that struct called Area which returns
the area of the circle instance.

type Circle struct {
Radius int

}

func main() {
c := Circle{3}
fmt.Println(c.Area()) // 28.274...

}



lesson 6, fin

If you had any trouble, now is the time to ask for help!

Questions?


