
Scopes and Slices

Tom Arrell

December 16



Recap. . .

Last week we covered control structures
I If statement

I For loop
I How to combine the two to make our programs more useful

This week
I Scopes, global and local
I Slices and arrays



Recap. . .

Last week we covered control structures
I If statement
I For loop

I How to combine the two to make our programs more useful

This week
I Scopes, global and local
I Slices and arrays



Recap. . .

Last week we covered control structures
I If statement
I For loop
I How to combine the two to make our programs more useful

This week
I Scopes, global and local
I Slices and arrays



Scope

What is it?
Scope defines the area of visibility within the program of variables
and functions.



Example

a := 1
{

b := 2
fmt.Println(a)

}
fmt.Println(a, b)

Hint: This doesn’t compile



Explanation

This is an example of local scope. Local scope works in only one
direction.

i.e. You can only access local scope that was defined at a higher
level than what you’re currently using.



Types

There are two primary scopes in Golang.

I Global: variables defined here are accessible anywhere within
the package that they were defined

I Local: variables defined here are only accessible within their
own block and below.



Types

There are two primary scopes in Golang.

I Global: variables defined here are accessible anywhere within
the package that they were defined

I Local: variables defined here are only accessible within their
own block and below.



Global Scope

Golang makes it rather easy to spot everything in the global scope.

These things are defined at the root level, i.e. have nothing
surrounding them, and therefore have no indentation.

package main

var hello = "Hello World"

func main() {
...

}



Local scope

Local scope is a little more nuanced. There is a heirarchy.

There is a concept of “nested” scopes. Therefore, we say that inner
scopes have access to things only in their current and outer scopes.

They are able to read from and write to the variables that they have
access to.



Shadowing

Shadowing is the term for when you redeclare a variable in a lower
scope that is already declared in an outer scope.

This is sometimes useful for preventing lower scopes from having
access to said variable.



Ararys and Slices

Most languages have a concept of arrays. These are essentially just
a list of related things.



Ararys and Slices

In Golang, we have:

I Arrays
I Slices

Note: Slices use arrays underneath.



So what’s the difference?

I Arrays have a fixed size

I Slices can grow



So what’s the difference?

I Arrays have a fixed size
I Slices can grow



Example

...

func slices() {
array := [6]int{1, 2, 3, 4, 5, 6}
fmt.Println(array)

slice := []int{1, 2, 3, 4, 5, 6, 7}
fmt.Println(slice)

}

Slices are most common in practice, as they are less bug prone. We
will continue looking are them.



Creating a slice

To create a slice in Go, you use one of the following syntaxes:

var := []type{}
var := make([]type, len, cap)

Both of which will create an empty slice, ready to put data into.



Range syntax

Go allows you to iterate over certain types of collections, slices
being one of these.

for i, v := range mySlice {
fmt.Println(i, v)

}

This is equivalent to the traditional for loop:

for i := 0; i < len(mySlice); i++ {
fmt.Println(i, mySlice[i])

}

Note: the index operator mySlice[i] which is essentially saying
mySlice.Get(i) where Get(i int) retrieves the value at index i.



Append

Golang has a useful built-in function for adding things to slices.

This is called the Append function.

You can use it like so:

mySlice := []int{1, 2, 3, 4}
mySlice = append(mySlice, 5, 6, 7)



Typed slices

Your slice doesn’t just need to store integers. You can store any
valid Type.



Slice example

type friend struct {
Name string
Planet string
Pets int
IsClose bool

}

friends := []friend{
friend{"Rey", "Tatooine", 1, true},
friend{"Finn", "Jakku", 0, false},
friend{"Han", "Corellia", 1, true},

}

This is an example of a custom struct type called “friend”, which we
are constructing 3 of inside a slice.



Challenge time

Given an array of integers, return a new array with all the values
doubled.

...

var input = []int{1, 2, 3, 4, 5}

func double(numbers []int) []int {
// TODO

}

func main() {
out := double(input)
fmt.Println(out)

}



Solution 1

var input = []int{1, 2, 3, 4, 5}

func double(numbers []int) []int {
for i, _ := range numbers {

numbers[i] = numbers[i] * 2
}
return numbers

}

func main() {
out := double(input)
fmt.Println(out)

}



Solution 2

var input = []int{1, 2, 3, 4, 5}

func double(numbers []int) []int {
newNums := make([]int, 0)

for _, v := range numbers {
newNums = append(newNums, v*2)

}

return newNums
}

func main() {
out := double(input)
fmt.Println(out)

}



Challenge #2

We run a pizza shop, and we have a program which automatically
calculates the total price of an order.

Given a (Go) slice of pizzas in an order, return the total price of the
order.

I Pepperoni = $6.00
I Mozzarella = $5.00
I Vege = $5.50



Challenge #2

...

func orderPrice(pizzas []string) int {
// TODO

}

func main() {
total := orderPrice([]string{

"pepperoni",
"mozzarella",
"vege",
"vege",

})

fmt.Println(total)
}



Solution
func orderPrice(pizzas []string) int {

price := 0

for _, pizza := range pizzas {
switch pizza {
case "pepperoni":

price += 6
case "mozzarella":

price += 5
case "vege":

price += 4
}

}

return price
}

...



Solution (continued)

...

func main() {
total := orderPrice([]string{

"pepperoni",
"mozzarella",
"vege",
"vege",

})

fmt.Println(total)
}



lesson 3, fin

If you had any trouble, now is the time to ask for help!

Questions?


