
Control structures

Tom Arrell

December 9, 2019



Figure 1: SumUp Gopher



Recap. . .

Last week we covered the basics
Why do we write code the way that we do?
What really is code?
What is a compiler?
What is a type?
What is a variable?



Moving on from Hello World

We covered building a program which printed “Hello, World!.”

We also covered reading input from the command line, and using
it as part of our program.



Up next

In this lesson, we’ll cover the common control structures which you
will find in almost every programming language.



What are control structures?

Control structures allow us to “change direction” during our
program.

They allow us to do things many times, or potentially not at all.

The basic ones we’ll be covering are called coniditionals and loops.



What are control structures?

Control structures allow us to “change direction” during our
program.

They allow us to do things many times, or potentially not at all.

The basic ones we’ll be covering are called coniditionals and loops.



What are control structures?

Control structures allow us to “change direction” during our
program.

They allow us to do things many times, or potentially not at all.

The basic ones we’ll be covering are called coniditionals and loops.



The IF statement

Also known as a conditional, this statement allows us to check
whether something is true or false, and then do something.

i.e.
we do something depending on a condition being met



Conditional example

package main

import "fmt"

func main() {
isSunny := true

if isSunny {
fmt.Println("The weather is good today!")

} else {
fmt.Println("The weather is bad today :(")

}
}



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false

I false
I true == true
I true
I 20 == 10
I false
I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false

I true == true
I true
I 20 == 10
I false
I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true

I true
I 20 == 10
I false
I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true
I true

I 20 == 10
I false
I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true
I true
I 20 == 10

I false
I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true
I true
I 20 == 10
I false

I "test" == "test"
I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true
I true
I 20 == 10
I false
I "test" == "test"

I true



IF continued

There is a special operator which allows you to compare if two
things are the same.

This is called the equality operator: ==

e.g.
I true == false
I false
I true == true
I true
I 20 == 10
I false
I "test" == "test"
I true



Conditional example 2

package main

import "fmt"

func main() {
password := "1234"

if password == "1234" {
fmt.Println("Welcome, agent Gopher.")

} else {
fmt.Println("Sorry, wrong password.")

}
}



Challenge

Create a program which reads a person’s name, and checks if it is
“Luke Skywalker”.

If it is, print: “May the force be with you.”

Otherwise, greet the person normally.

Last week:

...
func main() {

scanner := bufio.NewScanner(os.Stdin)

fmt.Print("What's your name? ")
scanner.Scan()

fmt.Println("Hello,", scanner.Text())
}



Answer

...

func main() {
scanner := bufio.NewScanner(os.Stdin)
fmt.Print("What's your name? ")
name := scanner.Scan()

if name == "Luke Skywalker" {
fmt.Println("May the force be with you!")

} else {
fmt.Println("Hello,", name)

}
}



Loops

Loops allow us to take advantage of what machines do well;
repetitive tasks.

Loops give us the ability to do the same thing many times, possibly
with slight variation between each run.



Loop example
Imagine we want to print out all the number from 1 to 100, without
having to manually write them out.

...

func main() {
for i := 0; i < 100; i++ {

fmt.Println("Your number:", i)
}

}

Will print out:

Your number: 0
Your number: 1
Your number: 2
Your number: 3
...



Loops explained

A traditional loop has 3 parts, separated by semicolons.

for x; y; z {
...

}

Let’s talk about each part.

I x: where you can declare variables, run at very beginning of
loop

I y: the condition which determines whether the loop will
continue, checked before each iteration

I z: the statement to execute at the end of each iteration,
usually adding one to the number



Loops explained

Let’s see that one more time. . .

for i := 0; i < 100; i++ {
fmt.Println("Your number:", i)

}



Practical loops

Write a program which will print out all numbers between 1 and n,
however, if the number is divisible by 3 print “Fizz”, and if it’s
divisible by 5 print “Buzz”.

Tip:
The modulo operator can be used to get the remainder from a
division.
I 5 % 3 == 2
I 21 % 7 == 0
I 100 % 40 == 20



lesson 2, fin

If you had any trouble, now is the time to ask for help!

Questions?


