Intro to programming

Tom Arrell

December 2, 2019

What to expect?

» We will assume no prior knowledge of programming initially,
however, we will expect to build upon knowledge from previous
lessons.

What to expect?

» We will assume no prior knowledge of programming initially,
however, we will expect to build upon knowledge from previous
lessons.

> We will cover theory only when it becomes relevant to achieve
our goals

What to expect?

» We will assume no prior knowledge of programming initially,
however, we will expect to build upon knowledge from previous
lessons.

> We will cover theory only when it becomes relevant to achieve
our goals

» We will be writing as much code as possible, learn by doing

What to expect?

» We will assume no prior knowledge of programming initially,
however, we will expect to build upon knowledge from previous
lessons.

> We will cover theory only when it becomes relevant to achieve
our goals

» We will be writing as much code as possible, learn by doing

> Please, please ask questions if things are not clear, or go ahead
if you feel like things are too slow

Prerequisites

There are a few things you need in order to follow along smoothly.

> A code editor

Prerequisites

There are a few things you need in order to follow along smoothly.

> A code editor
» VSCode is recommended

Prerequisites

There are a few things you need in order to follow along smoothly.

> A code editor
» VSCode is recommended

» The Go compiler, with your $GOPATH variable configured

What is programming?

Programming is fundamentally about giving instructions to a
computer.

There are many different flavours of these instructions. A few
common ones you may have heard about. ..

> Assembly

C

Golang, what we'll be learning
Java

Python

Javascript

vVvyyvyYVvyy

About those instructions

Computer are about manipulating memory

All programs are fundamentally just a list of instructions in binary (1
or 0) format, which the computer will understand.

e.g.

Add two numbers together
ADD = 00000000

Multiply two signed numbers together (i.e. includes negative)
MUL = 01101001

Writing binary is hard so we need a way to make it easier for humans

What is Golang?

Don't worry if these don't make sense just yet, they will soon.

» Golang is a 10 year old language, designed by Robert
Griesemer, Rob Pike, and Ken Thompson at Google

What is Golang?

Don't worry if these don't make sense just yet, they will soon.

» Golang is a 10 year old language, designed by Robert
Griesemer, Rob Pike, and Ken Thompson at Google
» It is compiled

What is Golang?

Don't worry if these don't make sense just yet, they will soon.

» Golang is a 10 year old language, designed by Robert
Griesemer, Rob Pike, and Ken Thompson at Google

» It is compiled

» Garbage collected

What is Golang?

Don't worry if these don't make sense just yet, they will soon.

» Golang is a 10 year old language, designed by Robert
Griesemer, Rob Pike, and Ken Thompson at Google

» It is compiled

» Garbage collected

> Statically typed

What is Golang?

Don't worry if these don't make sense just yet, they will soon.

» Golang is a 10 year old language, designed by Robert
Griesemer, Rob Pike, and Ken Thompson at Google

» It is compiled

» Garbage collected

> Statically typed

» Syntactically very similar to C

Compilation

Compilation is the process of taking code that a human can read,
and outputting code that a computer can read.

Compilation

Compilation is the process of taking code that a human can read,
and outputting code that a computer can read.

This will leave you with what we call a binary. Simply, a file
containing all of the instructions.

There is a bit more subtlety to this, but the simplification is fine for now

Compilation

Compilation is the process of taking code that a human can read,
and outputting code that a computer can read.

This will leave you with what we call a binary. Simply, a file
containing all of the instructions.

This binary will then be executable by the target machine. Think
.exe on Windows, and an Application on Mac.!

There is a bit more subtlety to this, but the simplification is fine for now

Practical: Part 1

Now that you know the basics, let's compile your first program in
Golang.

1. Create a new directory anywhere, name it helloworld

2. Open up your code editor (VSCode)

3. Within VSCode, open the project in the directory you just
created

4. Bring up the terminal within the project, Mac: CTRL + *

5. In the terminal, type: go mod init helloworld

Done? Great, please help someone next to you.

Practical: Part 2

6. Create a new file called main.go
7. Type the following:

package main
import "fmt"

func main() {
fmt.Println("Hello, World!")
}

8. Back in the terminal, type: go run .

If you see “Hello, World!" printed out in your console. Everything
worked!

Practical: Explanation

Congrats on writing your first Go program!
Now let's dig into what's actually going on. ..

Variables

Variables are little containers which you can put information into.

2This is only applicable to statically typed languages

Variables

Variables are little containers which you can put information into.

This information could be anything, but you must tell the compiler
what type you want it to be.?

2This is only applicable to statically typed languages

Types

The basic types in Golang are:

Name Type Description

Boolean bool A boolean can be either true or
false

String string A string is an set of letters

Integer int. .. Many different types, but all
are whole numbers

Byte byte Another name for a number
made up of 8 bits

Float float. .. Multiple types, but all

represent numbers which can
have decimal points

There are a couple more... But out of scope of this introduction.

Strings

We've already used a string by now. Look back at:

fmt.Println("Hello, World!")

One final exercise

Outputting things from your program is fun, but let's have a quick
go at taking some input.

Reading Input

Let's modify our program a little bit.

package main

import (
"bufio"
n fmt n
n os n

)

func main() {
scanner := bufio.NewScanner (os.Stdin)

fmt.Print ("What's your name? ")
scanner.Scan()

fmt.Println("Hello,", scanner.Text())

Once you've done that, feel free to run the command go run .
from your terminal again and see what happens!

You should now be asked for your name. Type it in and press ENTER.

Result

$ go run .
What's your name? Tom
Hello, Tom

lesson 1, fin
On to more advanced things next week

Questions?

